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ABSTRACT 

 
 Impact ionization is a process in which absorbed 
photons in semiconductors that are at least twice the 
bandgap can produce multiple electron-hole pairs.  For 
single-bandgap photovoltaic devices, this effect produces 
greatly enhanced theoretical thermodynamic conversion 
efficiencies that range from 45 - 85%, depending upon 
solar concentration, the cell temperature, and the number 
of electron-hole pairs produced per photon. For quantum 
dots (QDs), electron-hole pairs exist as excitons.  We 
have observed astoundingly efficient multiple exciton 
generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), 
ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, 
and 0.91 eV, respectively).  The effective masses of 
electron and holes are about equal in PbSe, and the onset 
for efficient  MEG  occurs at about three times the QD 
HOMO-LUMO transition (its “bandgap”).   The quantum 
yield rises quickly after the onset and reaches 300% at 4 x 
Eg (3.64 eV) for the smallest QD; this means that every 
QD in the sample produces three electron-hole 
pairs/photon.   
 
1. Objectives 
 This work addresses MEG and carrier energy relaxation 
processes in semiconductor QDs. Our aim is to determine 
how the efficiency of MEG is influenced by the change in 
physical properties related to quantum confinement in 
semiconductor nanoparticles. The ultimate objective is to 
use a QD semiconductor system with highly efficient 
MEG to fabricate a high-efficiency solar cell. 
  
2. Technical Approach 
 We are studying  MEG quantum yields and energy 
relaxation rates in QDs using fs pump-probe transient 
absorption techniques [1]. 
 
3. Results and Accomplishments 
 To study MEG processes in QDs, we detect 
multiexcitons created via exciton multiplication (EM) by 
monitoring the signature of multiexciton decay in the 
transient absorption (TA) dynamics, while maintaining a 
pump photon fluence lower than that needed to create 
multiexcitions directly. The Auger recombination rate is 
proportional to the number of excitons per QD with the 
decay of a biexciton being faster than that of the single 
exciton. By monitoring the fast-decay component of the 
TA dynamics at low pump intensities we can measure the 
population of excitons created by  MEG. The transients 
are detected with either a band-edge probe photon that 
monitors the band-edge bleach or a mid-IR photon that 

probes intraband transistions in the newly created 
excitons. 
 We have measured the MEG quantum yield (QY) in 
colloidial PbSe QDs with diameters ranging from 3.9 to 
5.7 nm, corresponding to QD bandgaps ranging from 0.91 
to 0.73 eV. For all the PbSe QD samples the onset for  
efficient MEG occurs at about three times the energy gap, 
a result in agreement with that reported by Schaller and 
Klimov [2]. Our data show that QYs > 2 can be achieved 
at higher photon energy, meaning that three electron/hole 
pairs per photon have been created by MEG. 
 For the 3.9 nm QD (Eg = 0.91 eV), the QY reaches a 
surprising value of 3.0 at Ehn/Eg = 4. This means that on 
average every QD in the sample produces three 
excitons/photon. The sharper rise of the QY in the 
smallest diameter sample compared to the other two 
larger samples may be due to the different surface 
passivation conditions. The 3.9 nm QD sample was 
treated with oleic acid and oleylamine to improve the 
surface passivation, which greatly increased the single-
exciton lifetime. More work is warranted to understand 
what role the surface plays in efficient MEG. 
 For MEG to be the dominant cooling process, its rate 
must be much faster than the competing cooling rates of 
excited excitons by phonon emission. In PbSe QDs, the 
fast cooling by the Auger process is expected to be 
inhibited because of the large spacing between both hole 
and electron levels which is a consequence of the nearly 
equal electron and hole effective mass in PbSe. With 
Auger cooling inefficient, we may expect cooling rates of 
a few ps, as is observed in other QD systems where the 
phonon bottleneck is operative.  A new and unique model 
to explain the details of MEG in QDs has been proposed 
[1] 
 In theoretical efficiency calculations [3] of solar cells 
with impact ionization (II) included as a charge 
generation process, a stair step QY, representing the 
energetic maximum QY that can be obtained from II, is 
used with an idealized detail balance model to calculate 
the maximum expected efficiency vs Eg. We have 
developed an alternate approach to incorporate idealized 
or experimentally determined II QYs into a numerical 
device simulator, which allows us to explore the potential 
benefits of II on cell performance. This approach also 
allows us to incorporate deviations from ideal behavior 
(Auger, trap and surface recombination, finite-carrier 
mobilities, incomplete absorption, etc.) into the device 
model. When II is active in a material, the total generation 
rate (optical plus II) can be written as: 
 
   G(x) = 㨰(1+QYII)aGexp(-ax)  (1) 
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where a is the absorption coefficient, G is the solar 
photon flux, and the summation covers the energies above 
the bandgap. 
 Through simulations, we have compared the 
performance of an idealized device having the different 
QYII models shown in Fig. 1. 
 

 
Fig. 1. QY models used in the device simulations. 
 
We investigated four II QY models: the case of no II, the 
experimentally measured QYII of PbSe QDs shifted to Eg, 
a linear QYII, and the energetic maximum QY that can be 
obtained from II. Charge generation from II for absorbed 
photons above twice the bandgap will add to the usual 
optical generation from absorbed photons with hn > Eg. 
 To calculate theoretical efficiencies with the above II 
models, we used a simple, idealized pn-junction 
configuration with a total length of 3.7 mm. The 
absorption coefficient was taken to have a square-root 
energy dependence rising to 105 cm-1 at hn = 4 eV, which 
insured ~100% absorption of photons with hn > Eg. Both 
radiative and Auger recombination mechanisms were 
included with a radiative B coefficient of 10-10 cm6/s and 
and an Auger coefficient of 8x10-28 cm3/s. The mobility of 
electrons and holes was taken to be 100 cm2/Vs and the n-
and p-side doping was 1017 cm-3. In these initial 
calculations, we neglected minority carrier surface 
recombination and trap recombination. The cell efficiency 
vs. Eg over the range 0.5 to 1.5 eV is shown in Fig. 2. 
 

 
Fig. 2. Calculated efficiencies for different QYII models. 
 
 Under unconcentrated AM1.5 illumination, a cell with 
maximal II has the potential to reach ~41% efficiency at 
Eg ~ 1 eV. The efficiencies calculated using the 
experimentally determined II QY of PbSe QDs are lower 
than the maximum values, because of the slow rise of the 
QY above 2xEg. The improvement over the “no II” case 
is much better, however, for lower bandgaps. This implies 
that lower-gap QDs with a fast turn-on in QYII will be 
required for significant efficiency enhancements in QD 
solar cells. 
 
4. Conclusions 
 We have observed very high QYs because of multiple 
exciton generation in PbSe QDs, reaching up to 300% at 
4xEg. Future work will explore the dependence of QD 
size, electronic structure, and related semiconductor 
properties on MEG, and will also model the performance 
of QD-sensitized mesoporous solar cells that are based on 
impact ionization in QDs. 
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